GOOD GREEN MANURES

Leslie Sloan ¹ Robin Walker ²

¹ Mains of Thankerton, Lanarkshire

² Research Agronomist, SRUC

Green manures

- Crops grown with the intention that they will be ploughed in to benefit the following crop
 - Green manures
 - Green cover
 - Cover crops
 - Catch crops

Why grow them?

Greening compliance

- Counts as an EFA (environmental focus area)
- Establishment of a temporary crop in the autumn
- Weighting factor of 0.3 x
- Incorporate before spring crop
- Must not be used for agricultural production, i.e.
 no grazing

Why grow them?

AECS option

- Stubbles followed by green manure in an arable rotation
- -£498.49 /ha*
- No sprays: before or during
- No nutrients (fertiliser, dung, etc.): during
- Establish in spring (after 1st March)
- Keep until 15th August or 1st March

- Soils?
- Weeds and pests?

- Yield?
- Biodiversity?

Soils

- Big root system benefits:
 - Soil structure
 - Organic matter
 - Soil biology
- Provides ground cover during soil erosion risk periods

Information taken from:

Cover crops: a practical guide to soil and system improvement, NIAB (2015)

Weeds and pests

- Short term weed control
 - Suppression of weeds before following crop
- Longer term weed control (i.e. sterile brome)
 - Stale seedbed approach: allow weeds to germinate,
 then destroy before they set seed
- Pest control
 - Brassicas may have biofumigant activity against soil-borne pests – roll straight after incorporation – effect on other beneficial soil organisms?

Yield

- Nitrogen retention 'catch' crop
- Nitrogen fixation from any legumes in the mix
- Improved soil structure
- Weed reduction?
- Increase in pollinators (for oilseed rape and pulse crops)

Biodiversity

- Winter cover and habitat
- Benefits birds, mammals, and insects
- Flowering species in summer benefits pollinators

Seed mixes

 An AECS mix must have at least one annual flowering plant, e.g. clover, phacelia, vetch, and must be established from 1st March

An EFA compliant mix requires two or more of

these:

Barley	Oats	Triticale	Rye
Clover	Vetch	Alfalfa	
Mustard	Radish		
Phacelia			

Seed mix components

- These components can be split into 4 broad groups
- These groups have different characteristics

Group	Crops			
Cereal	Barley	Oats	Triticale	Rye
Legume	Clover	Vetch	Alfalfa*	Peas
Brassica	Mustard	Radish		Rape
Other	Phacelia		Chicory	Buckwheat

^{*} Unlikely to do well in wetter, more acidic Scottish soils

Green manures

 The different characteristics of the groups give them advantages and disadvantages

Group	Advantages	Disadvantages
Cereal	Establishment, seed availability	Pest/disease 'green bridge'
Legume	Fixes nitrogen	Establishment (back end)
Brassica	Establishment, roots open up the soil	Clubroot risk, can dominate mix when mature, establishment
Phacelia	Beneficial to pollinators	Poor frost tolerance

Field lab: seed mixes

Oats, vetch, & phacelia

@ 100 kg/ha;

vetch @ 20 kg/ha;

phacelia @ 5 kg/ha

Oats and rye

oats

@ 90 kg/ha;

rye

@ 90 kg /ha

Oats and radish

oats

oats

@ 120 kg/ha;

radish

@ 15 kg/ha

Mustard & radish*

mix

@ 20 kg/ha

*Established following discing winter barley stubbles, and then sowing. Lots of winter barley volunteers.

Assessments

- Green manure
 - Yield (organic matter); protein (residual N)
- Soil
 - Visual Evaluation of Soil Structure (VESS);
 earthworm number, weight and diversity
- Cost
 - Seed, cultivations
- Following crop
 - Yield; weeds / volunteers; visual assessment (residual N)

Structure quality	Size and appearance of aggregates	Visible porosity and Roots	Appearance after break-up: various s oils	Appearance after break-up: same soil different tillage	Distinguishing feature	Appearance and description of natural or reduced fragment of ~ 1.5 cm diameter	
Sq1 Friable Aggregates readily crumble with fingers	Mostly < 6 mm after crumbling	Highly porous Roots throughout the soil			Fine aggregates	1 cm	The action of breaking the block is enough to reveal them. Large aggregates are composed of smaller ones, held by roots.
Sq2 Intact Aggregates easy to break with one hand	A mixture of porous, rounded aggregates from 2mm - 7 cm. No clods present	Most aggregates are porous Roots throughout the soil			High aggregate porosity	1 cm	Aggregates when obtained are rounded, very fragile, crumble very easily and are highly porous.
Sq3 Firm Most aggregates break with one hand	A mixture of porous aggregates from 2mm -10 cm; less than 30% are <1 cm. Some angular, non-porous aggregates (clods) may be present	Macropores and cracks present. Porosity and roots both within aggregates.			Low aggregate porosity	1 cm	Aggregate fragments are fairly easy to obtain. They have few visible pores and are rounded. Roots usually grow through the aggregates.
Sq4 Compact Requires considerable effort to break aggregates with one hand	Mostly large > 10 cm and sub-angular non-porous; horizontal/platy also possible; less than 30% are <7 cm	Few macropores and cracks All roots are clustered in macropores and around aggregates			Distinct macropores	1 cm	Aggregate fragments are easy to obtain when soil is wet, in cube shapes which are very sharpedged and show cracks internally.
Sq5 Very compact Difficult to break up	Mostly large > 10 cm, very few < 7 cm, angular and non- porous	Very low porosity. Macropores may be present. May contain anaerobic zones. Few roots, if any, and restricted to cracks			Grey-blue colour	1 cm	Aggregate fragments are easy to obtain when soil is wet, although considerable force may be needed. No pores or cracks are visible usually.

Dry matter yield (t/ha)

^{*} Radish & mustard & volunteer barley

Protein and ME (per ha)

So what's best?

- In this trial...
- Oats, vetch, and phacelia for soil structure
- <u>Mustard and radish</u> (least cultivations in establishment) is best for earthworms
- Oats and rye for bulk (organic matter) and nitrogen
- We won't really know until the following crop of spring barley is ready

What next?

- Compare the results with following crop performance
- SRUC and the James Hutton Institute are also doing green manure trials, look at their findings
- Are green manures worth sowing?

SRUC: intercrops

• Intercrops with legume component

- CAP greening
 - strict rules not always sensible!
 - N fixing crops
 - cover crops
- Protein crops
- Multifunctional end-uses

This information is from SRUC work funded through Scottish Government, RERAD, and the Loirston Trust

VESS: N-fixing cover crops

Initial bee plant networks

Initial bee plant networks

Red Clover / Black Medic / Lucerne

Red Clover/White Clover/Crimson Clover

B.pascuorum

A.mellifera

B.lapidarius B.pratorum B.hortorum

