Imperial College London #### Introduction -20 Soil is one of the world's most precious natural ¬ resources. It is made up of water, air, minerals and organic matter, and is vital for plant survival -∞ and crop production. Soil also provides a home for a vast array of animals including - o earthworms, stores and filters water and provides a foundation for buildings, and therefore is important in many ways. This fold-out guide is designed to take you through the process described below, and will refer you to the accompanying workbook for further guidance or to record data. Before you start the survey read pages 2-3 of the accompanying workbook. The survey starts by selecting your location, and recording some site characteristics (Section (A)). You are then asked to dig a soil 'pit', and collect and separate immature and adult earthworms into groups (Section B). The next step focuses on soil properties (Section 6). Following this, all adult earthworms from the soil and the pit can be studied (Section 1). If you still have more time available, search for earthworms elsewhere or report any other organisms you encounter in your pit (Section 3). Submit all data to the OPAL website (Section 6). The survey should preferably be performed in pairs. You are provided with enough material to sample 2 locations. You can photocopy pages 6 and 7 of the workbook for data from the second location. Try to locate your second pit in an area close by, but which looks different from the first. ### The survey starts here ### **A** Site characteristics Choose a location to carry out your survey. Select a position to dig your soil pit. Now go to the workbook and record the pit's location, site characteristics and other information on page 6. ## ® Dig the soil pit If you find glass, metal or other sharp objects, stop immediately and discovered stop immediately and dig another pit elsewhere Measure a 20cm x 20cm square and dig the soil pit to a depth of 10cm. For details on how to do this refer to page 4 of the workbook. Place the removed soil on a plastic bin bag and put any earthworms in a container. Look at each earthworm and see if it has a well-developed saddle. Sort all earthworms found in the removed soil into 2 groups, those with saddles (adults) and those without saddles (immatures), and count the numbers in each group. Now go to page 7 of the workbook and record these numbers in Questions B1 and B2. Please rinse all earthworms with water, and return the immatures to the soil (not the pit). To extract the deep burrowing earthworms, mix one of the mustard sachets provided into 750ml of water and pour into the pit (this is not toxic to the earthworms). Time how long it takes until the water has drained away (up to 3 minutes). Now go to page 7 of the workbook to record this (Question B3). Collect any earthworms that emerge. Sort, count and rinse them as previously. Now go to page 7 of the workbook to record this (Questions B4 and B5). ### **O** Soil properties Test the properties of the soil (Questions 7-15, record on page 7 of the workbook). - 7 How many plant roots are there in the soil that you have removed? - 8 Can you see any objects in the soil that do not look like they should naturally be there? Remember to take care when handling the soil. - Construction material e.g. brick, concrete, cement, mortar - 1 Metal e.g. wire, sheeting, tin - Glass e.g. broken bottles, other glass - Cut wood - Other - None - 9 Push the pointed end of a pencil or pen into the soil surface. How hard was it to push it into the soil? - a Easy b Difficult Very difficult - 10 Take a small amount of soil from the pit about the size of a 2p piece and put it on something waterproof. Open the sachet of vinegar and pour a few drops onto the soil. If the soil fizzes it means it contains a mineral salt called calcium carbonate CaCO3. Does the soil fizz? Record 'yes' or 'no' in the workbook. 11 Take a handful of soil in the palm of your hand and squeeze it. How moist is the soil? Ory – no water (loose soil does not stick together when saueezed) Moist – no visible water (water does not drip out of the soil when squeezed) Wet – water visible (water runs/drips out of the soil when squeezed) 12 Find out the soil's pH. Place 1cm of the removed soil into a container. Add enough water to cover the soil and stir the mixture for about a minute. Holding the pH test strip by the arrow, completely immerse the strip in the soil solution for roughly three seconds. Remove and quickly rinse with fresh water from the same bottle. Hold the strip up to the light and compare the indicator zone (unprinted area) to the colour scale. Read off the printed pH value and record it. 13 Follow the Key to soil texture (see right) to find the texture of the soil. Record the soil type in the workbook. - a A sour, putrid or chemical smell? - D No smell? - O An earthy, sweet, fresh smell? **15** What colour is the soil ribbon? Choose the nearest colour match. ### **D** Earthworms Using the earthworm record sheet provided on page 7 of the workbook, record the length (using the ruler provided on the guide) and colour of each adult earthworm. Using the key overleaf, and with the help of the magnifier provided in the pack, identify and record the species of each adult earthworm found. ### Additional search If there are no earthworms in your pit and you still have more time available record the other organisms in the pit (page 8 of the workbook). Then search for earthworms in habitats within 5 metres of your pit as described on page 4 of the workbook. Follow the process outlined in Section of or any earthworms found. When you have finished return the soil to the pit, replace any turf carefully and leave the area tidy. Take any litter away with you. #### **A** Data submission Upload your results and images to the OPAL website: www.OPALexplorenature.org We don't advise you to work on your own. Make sure that you know what to do in an emergency. Take a responsible friend who can help if things go wrong. Ensure that you have permission from the landowner to dig holes on their land. Wear plastic gloves and wash your hands before eating. Cover any open wounds before starting the activity. Open Air Laboratories (OPAL) is a new partnership initiative which is encouraging people to spend more time outside understanding the world around them. OPAL wants to get everybody involved in exploring, studying but most of all enjoying their local environment. OPAL will be running a programme of events and activities until the end of 2012. To find out more about events in your region please visit the website: **www.OPALexplorenature.org** Photographs by: Martin Head¹, Simon Norman⁴, Louise Parker⁴. Text by: Martin Head¹, Nick Voulvoulis¹, James Bone¹, Laura Edwards¹, Elizabeth Stevens¹, Dečlan Barraclough³, Tatiana Boucard³, David Jones², Paul Eggleton², Stephen Brooks², Simon Norman⁴, Louise Parker⁴, Rebecca Farley⁴, Mark Dowding⁴, Linda Davies¹, Carolina Bachariou¹. ¹ Imperial College London. ² Natural History Museum. ³ Environment Agency. ⁴ Field Studies Council. Bone¹, Martin Head¹, Nick Voulvoulis¹, Linda Davies¹, Carolina Bachariou¹.¹ Imperial College London.² Natural History Museum. ³ Environment Agency. ⁴ Field Studies Council. ⁵ University of Central Lancashire. Supported by the Esmee Fairburn Foundation.