Crop mixtures

Adrian Newton, David Guy, Christine Hackett, Bill Thomas, Roger Ellis, Stuart Swanston, Steve Hoad (SRUC)

Hartwood: John Rattray
Balruddery: John Bennett, Derek Matthew, Euan Caldwell
Monoculture → variety mixtures

Cereal variety mixtures:
✓ Increase yield
✓ Reduce disease
✓ Maintain quality
✓ Increase yield stability

Demonstrated in:
➢ Winter wheat for distilling (and baking)
➢ Winter barley for feed
➢ Spring barley for malting and feed

→ More resilient, efficient crops

Limitations...?
Questions:

Within species
1. How many components?
2. What proportions?
3. What spatial arrangements (structured/random/connectivity/patches)?
4. How diverse can/should components be?
5. What traits complement best (e.g. canopy types, weed competitiveness...)?
6. Straw biomass effects (/harvest index)?
7. Nutrition and pathogen interactions (nitrogen & fungicides)?

Between species
• How different crop species interact (cereal-legume etc.), for either biomass (for anaerobic digestion) or silage use

Practicalities
➢ Quality... As good / better / less variable than monoculture
Mixtures: Disease reduction, yield increase and stability

- Less lodging in mixtures – structural support
- Convergence of heading dates, maturity and height
Component proportions

Disease % cf. monoculture mean

Proportion of second component

Optic-Westminster
Concerto-Quench
Optic-Waggon

The James Hutton Institute
Structured resistance gene deployment

a) Monoculture

b) Homogeneous

c) Structured

Selection for:
a) Simple
b) Complex
c) Simple and Complex and Groups

Mildew1
4.09a
4.69a
2.61b
LSD 1.06
1Percentage whole plant infection.
Thoroughly mixed or patchy?

Structure and scale

- Random
 Homogeneous or patchy?
- Regular
 Small or large areas?
- Structure
 Complex and simple?
- Proportions
 Connectivity and ratio?
But on a REAL farm...

Drill hopper

Pre-mixed

Sequential

In situ

Simultaneous

3 different varieties

A

B

C
Yield

| Patchy arrangements in the field |

<table>
<thead>
<tr>
<th>Yield</th>
<th>In situ</th>
<th>Pre-mix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixtures cf. mono mean:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>+13%***</td>
<td>-4%</td>
</tr>
<tr>
<td>2006</td>
<td>+17%***</td>
<td>+10%</td>
</tr>
<tr>
<td>Rhynchosporium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixtures cf. mono mean:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>-34%***</td>
<td>+10%</td>
</tr>
<tr>
<td>2007</td>
<td>-58%***</td>
<td>-35%</td>
</tr>
</tbody>
</table>
Canopy types

- Semi-prostrate
- Dwarf
- Tall
- Erectoid
Mixed canopy habits

% increase yield

ED TD TE SD SE TS 2-comp mean TED SED TSD TSE 3-comp mean TSED 4-comp mean
Are mixtures always beneficial?

<table>
<thead>
<tr>
<th>Trial</th>
<th>Crop</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC</td>
<td>WW</td>
</tr>
<tr>
<td>DP</td>
<td>WW</td>
</tr>
<tr>
<td>DZ</td>
<td>WW</td>
</tr>
<tr>
<td>CU</td>
<td>SB</td>
</tr>
<tr>
<td>GCh</td>
<td>WB</td>
</tr>
<tr>
<td>DC</td>
<td>WB</td>
</tr>
<tr>
<td>EV</td>
<td>WB</td>
</tr>
<tr>
<td>DP</td>
<td>WB</td>
</tr>
<tr>
<td>EK</td>
<td>WB</td>
</tr>
<tr>
<td>GCb</td>
<td>WB</td>
</tr>
<tr>
<td>EL</td>
<td>WW</td>
</tr>
<tr>
<td>CX</td>
<td>WW</td>
</tr>
<tr>
<td>GL</td>
<td>SB</td>
</tr>
<tr>
<td>DK</td>
<td>SB</td>
</tr>
</tbody>
</table>
Within species
1. How many components?
2. What proportions?
3. What spatial arrangements (structured/random/connectivity/patches)?
4. How diverse can/should components be?
5. What traits complement best (e.g., canopy types, weed competitiveness...)?
6. Straw biomass effects (/harvest index)?
7. Nutrition and pathogen interactions (nitrogen & fungicides)?

Between species
→ How different crop species interact (cereal-legume etc.), for either biomass (for anaerobic digestion) or silage use

Practicalities
→ Quality... As good / better / less variable than monoculture
Cereals with legumes...
Regrowth after cutting
2015 trial:

Digestibility:
NCGD: neutral cellulose gammanese enzymes

Total plot bale yield

Crude Protein

DM

Top biomass combinations 2016:
- Rye+Oats+Vetch: 452
- Rye+Oats: 448 (Wheat not in 2016 trial)
- Rye+Oats+Pea: 433
- Oats+Barley+Pea: 444
- Oats+Barley+Vetch: 428
- Oats+Triticale+Pea: 434

Pea very +ve if N reduced (LAE increased)
Winter cereal-legume biomass crops

Biomass (kg/plot)

Crop mixture

Balruddery-N0.5
Balruddery-N1.0
Hartwood-N0.5
Hartwood-N1.0

BEAN-mix CLOVER-mix IRG-mix mix PEA-mix VETCH-mix
Conclusions

Many...
Practical and beneficial...

Thank you!