FIELD LAB: FEEDING PIGS SILAGE

Gillian Butler¹
Chris Walton²
Diane Holmes¹
David Michie ³

¹ Nafferton Ecological Farming Group, Newcastle University
² Peelham Farm, Berwickshire
³ Soil Association Scotland, Edinburgh
AIMS

Reduce production costs
 – improve financial resilience

Improve gut health
 – improve animal welfare

Reduce the reliance on soya as a source of protein
 – reduce the environmental impacts associated with soya production & improve environmental resilience
SILAGE
Feeding pigs silage

Why not?

• Pigs are categorised as monogastrics – like poultry and humans
• Monogastrics are mainly fed concentrates – the main source of protein is usually soyabean meal (SBM)
SOYABEAN MEAL
FEEDING PIGS SILAGE

Why not?

• Silage is a bulky feed – digesting it has an energy cost

• Lower liveweight gain?

• Lower killing out percentage?

• Poorer carcass grade?
FEEDING PIGS SILAGE

Why?

• Pigs are actually *hindgut fermenters*
• Bugs can digest fibrous feeds in their hindgut
• Silage can be produced in Scotland
• Soya is imported
• Silage is cheap, SBM is expensive
GRASS / CLOVER
FEEDING PIGS SILAGE

Why?

• Additional behavioural substrate – allows expression of natural behaviours

• Better for their gut – finely milled feeds are associated with gastric ulcers
METHODOLOGY

Pigs of the same age, sex, and breeds were split into 2 groups

• Group A, ration 1 (control)
 – Ad-lib access to proprietary feed pellets (includes wheat & soyabean meal)

• Group B, ration 2 (experimental)
 – Ad-lib access to 50/50 pellets & barley mix, and ad-lib access to red clover silage
METHODOLOGY

• Ration B diluted the protein content (by having more barley)
• This reduced amino acid supply
• Encourages seeking out of high protein feeds elsewhere, i.e. silage
• Other studies tend to keep the full diet on offer, as well as silage
 – No incentive for pigs to seek lysine (an amino acid)
Protein

<table>
<thead>
<tr>
<th></th>
<th>DM (%)</th>
<th>CP (%)</th>
<th>Lys (%)</th>
<th>Met (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earthworms†</td>
<td>26.02</td>
<td>51.66</td>
<td>3.36</td>
<td>0.94</td>
</tr>
<tr>
<td>Arthropods†</td>
<td>38.58</td>
<td>39.13</td>
<td>2.24</td>
<td>0.60</td>
</tr>
<tr>
<td>Molluscs†</td>
<td>14.01</td>
<td>62.59</td>
<td>3.70</td>
<td>0.92</td>
</tr>
<tr>
<td>Insect larvae†</td>
<td>25.23</td>
<td>48.09</td>
<td>2.96</td>
<td>0.86</td>
</tr>
<tr>
<td>SBM*</td>
<td>88.0</td>
<td>42.0</td>
<td>3.0</td>
<td>0.63*</td>
</tr>
<tr>
<td>Beans*</td>
<td>86.0</td>
<td>25.0</td>
<td>1.7</td>
<td>0.23*</td>
</tr>
</tbody>
</table>

†Crawley (2015) Fulfilling 100% organic pig diets: feeding roughage and foraging from the range

ASSESSMENTS

• Liveweight gain (lwg)
• Killing out percentage
• Carcass quality: grade
• Cost of feed (per g of lwg)
• Gut length: hindgut fermentation
• Eating quality – taste
ASSESSMENTS

• Liveweight gain (lwg)
• Killing out percentage
• Carcass quality: grade
• Cost of feed (per g of lwg)
• Gut length: hindgut fermentation
• Eating quality – taste
RESULTS: PIG PERFORMANCE

• 72 Tamworth and Duroc crosses – boars and gilts

• 19 Aug initial weighing (31-68 kg)
 – 53% <50 kg (small)
 – 47% >50 kg (big)

• 13 Oct interim weighing (average 100 kg)

• All pigs grew better than expected
RESULTS: PIG PERFORMANCE

• For the Duroc crosses
 – No significant difference in weight gain between rations

• For the Tamworth crosses
 – No significant difference in weight gain between rations for ‘big’ animals
 – A difference in weight gain between ‘big’ and ‘small’ with the silage diet

• All pigs grew better than expected
TASTE TEST

Soil Association SCOTLAND
RESULTS: TASTE TEST

• Attendees were asked to score each type of pork (A and B) on a scale of 1-5
 1 = least like-able; 5 = most like-able

Criteria scored:

• Appearance raw
• Appearance cooked
• Cooking quality
• Aroma
• Texture in mouth
• Flavour
RESULTS: TASTE TEST

OVERALL SCORE

OVERALL PREFERENCE

Like-ability score

A
B

A
B
No Answer

27%
27%
46%
CONCLUSIONS

• In this trial...

• Silage is an effective source of feed for pigs with mainly Duroc genetics
 – No significant impact on weight gain

• No impact on taste

• Potential to reduce imported protein by using home grown silage for pigs
REFERENCES

• Green pig: defra-funded LINK project
 – SRUC, University of Nottingham, NIAB, BOCM Pauls, BPEX, Evonik, Harbro, MPP, PGRO, Premier Nutrition, QMS, Soil Association, UNIP

• Improved Contribution of Local Feed to Support 100% Organic Feed Supply to Pigs and Poultry (ICOPP)
 – Aarhus University, Wageningen UR, the Organic Research Centre, Swedish University of Agricultural Sciences, Boku University of Natural Resources and Life Sciences, Johan Heinrich von Thunen Institut, Louis Bolk Institute, Natural Resources Institute Finland, Weihenstephan-Triesdorf University of Life Sciences, FAI, FIBL, INRA, Lithuanian Institute of Agrarian Economics, LFZ, ITAB