

Green manures

- Crops grown with the intention that they will be ploughed in to benefit the following crop
 - Green manures
 - Green cover
 - Cover crops
 - Catch crops

Why grow them?

Greening compliance

- Counts as an EFA (environmental focus area)
- Establishment of a temporary crop in the autumn
- Weighting factor of 0.3 x
- Incorporate before spring crop
- Must not be used for agricultural production, i.e.
 no grazing

Why grow them?

AECS option

- Stubbles followed by green manure in an arable rotation
- -£498.49 /ha
- No sprays: before or during
- No nutrients (fertiliser, dung, etc.): during
- Establish in spring (after 1st March)
- Keep until 15th August or 1st March

Agronomic benefits*

- Soils?
- Weeds and pests?
- Yield?
- Biodiversity?

*Cover crops: a practical guide to soil and system improvement, NIAB (2015)

Soils

- Big root system benefits:
 - Soil structure
 - Organic matter
 - Soil biology
- Provide ground cover during soil erosion risk periods

Weeds and pests

- Short term weed control
 - Suppression of weeds before following crop
- Longer term weed control (i.e. sterile brome)
 - Stale seedbed approach: allow weeds to germinate in the back-end, then destroy before they set seed
- Pest control
 - Brassicas may have biofumigant activity against soil-borne pests

Yield

- Nitrogen retention 'catch' crop
- Nitrogen fixation from any legumes in the mix
- Improved soil structure
- Weed reduction?
- Increase in pollinators (for oilseed rape and pulse crops)

Biodiversity

- Winter cover and habitat
- Benefits birds, mammals, and insects
- Flowering species in summer benefits pollinators

Seed mixes

 An AECS mix must have at least one annual flowering plant, e.g. clover, phacelia, vetch, and must be established from 1st March

An EFA compliant mix requires two or more of

these:

Barley	Oats	Triticale	Rye
Clover	Vetch	Alfalfa	
Mustard	Radish		
Phacelia			

Seed mix components

- These components can be split into 4 broad groups
- These groups have different characteristics

Group	Crops			
Cereal	Barley	Oats	Triticale	Rye
Legume	Clover	Vetch	Alfalfa*	Peas
Brassica	Mustard	Radish		Rape
Other	Phacelia		Chicory	Buckwheat

^{*} Unlikely to do well in wetter, more acidic Scottish soils

Green manures

 The different characteristics of the groups give them advantages and disadvantages

Group	Advantages	Disadvantages
Cereal	Establishment, seed availability	Pest/disease 'green bridge'
Legume	Fixes nitrogen	Establishment (back end)
Brassica	Establishment, roots open up the soil	Clubroot risk, can dominate the mix when mature
Phacelia	Beneficial to pollinators	Poor frost tolerance

Field lab

- Green manure mixes* sown on a farm in Lanarkshire
- In between winter barley and spring barley
- Sown for EFA compliance
- Will there be any other benefits?

^{*} Courtesy of Hutchinsons, thanks to Keith Brand

Seed mixes

Oats, vetch, & phacelia

oats @ 100 kg/ha;

vetch @ 20 kg/ha;

phacelia @ 5 kg/ha

Oats and rye

oats

@ 90 kg/ha;

rye

@ 90 kg /ha

Oats and radish

oats @ 120 kg/ha;

radish @ 15 kg/ha

Mustard & radish*

mix

@ 20 kg/ha

*Established following discing winter barley stubbles, and then sowing. Lots of winter barley volunteers.

Assessments

- Cost (seed, cultivations)
- Green manure
 - Yield potential for organic matter?
 - Protein amount of N for following crop?
- Soil
 - Visual Evaluation of Soil Structure (VESS)
 - Earthworm number, weight and diversity
- Following crop
 - Yield
 - Weeds / volunteers
 - Visual assessment (residual nitrogen)

Dry matter yield (t/ha)

Protein and ME (per ha)

So what's best?

- In this trial...
- Oats, vetch, and phacelia for soil structure
- Mustard and radish (least cultivations in establishment) is best for earthworms
- Oats and rye for bulk and nitrogen

 We won't really know until the following crop of spring barley is ready

What next?

- A visit to Leslie's in spring to see the green manure
- Measurements in the green manure and spring barley crop
- Look at the results, and think about what they mean
- SRUC and the James Hutton Institute are also doing green manure trials, look at their findings
- Are green manures worth sowing?

